Functional Inequalities for Feynman–Kac Semigroups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Inequalities for UniformlyIntegrable Semigroups and Applications

Let (E; F;) be a probability space, (E; D(E)) a (not necessarily symmetric) Dirichlet form on L 2 (), and P t the associated sub-Markov semigroup. The equivalence of the following eight properties is studied: (i) the L 2-uniform integrability of the unit ball in the Sobolev space; (ii) the super-Poincar e inequality (1.2); (iii) the F-Sobolev inequality (1.3); (iv) the L 2-uniform inte-grabilit...

متن کامل

Estimates of Semigroups and Eigenvalues Using Functional Inequalities

Boundedness properties of semigroups are studied by using general PoincaréSobolev type inequalities, from which Gross’ theorem on hyperboundedness and log-Sobolev inequality is extended. Some results hold also for nonsymmetric semigroups. For instance, a super-Poincaré inequality always imply an estimate of the corresponding semigroup. In particular, the log-Sobolev inequality implies the hyper...

متن کامل

Dimension-independent Harnack Inequalities for Subordinated Semigroups

Dimension-independent Harnack inequalities are derived for a class of subordinate semigroups. In particular, for a diffusion satisfying the BakryEmery curvature condition, the subordinate semigroup with power α satisfies a dimension-free Harnack inequality provided α ∈ ` 1 2 , 1 ́ , and it satisfies the log-Harnack inequality for all α ∈ (0, 1). Some infinite-dimensional examples are also presen...

متن کامل

Logarithmic Sobolev Inequalities for Inhomogeneous Markov Semigroups

We investigate the dissipativity properties of a class of scalar second order parabolic partial differential equations with time-dependent coefficients. We provide explicit condition on the drift term which ensure that the relative entropy of one particular orbit with respect to some other one decreases to zero. The decay rate is obtained explicitly by the use of a Sobolev logarithmic inequalit...

متن کامل

Phi-entropy inequalities for diffusion semigroups

We obtain and study new Φ-entropy inequalities for diffusion semigroups, with Poincaré or logarithmic Sobolev inequalities as particular cases. From this study we derive the asymptotic behaviour of a large class of linear Fokker-Plank type equations under simple conditions, widely extending previous results. Nonlinear diffusion equations are also studied by means of these inequalities. The Γ2 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2019

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-019-00915-y